Ⅰ 配眼镜一般要多少钱
价格方面的话便宜的一二百,贵的几千上万都是有的,这个就要看你选择的镜片、镜框了,像如果选择蔡司镜片配上凯迪拉克或者Gucci镜框,哪价格没有个1k以上拿不下来,这还是我们写字楼成本低的报价,若是路边店,比如某叶,房租、人工成本在哪,没有3k左右,拿不下来的,还有更贵的。
便宜的话,像大众点的镜框,选个明月镜片,也就几百块钱,当然,不论贵的便宜的,如果你度数高,价格还会往上涨的,因为度数越高,越难配。
配眼镜的流程:
按照我们店的一个配眼镜流程的话,平均时间是在1个小时左右,为什么会这个时间,下面给你说一下:
验光:
因为配眼镜就是为了眼镜好,所以我们在验光这一关把控的非常严,会做到将最精准的度数验光出来,通常验一次光都会在15-30分钟左右,如果特殊情况还会再验一次。
另外如果大家配眼镜验光师只用了几分钟就验好光,那我觉得你可以换一家或者选择医院验光了。
量瞳距
瞳距就不细说了,这个很快,就是量个距离而已,不过为了精准,也是会反复量几次。
选眼镜架
这个就占用了平均20-30分钟左右的时间,因为大多数的人选择眼镜架肯定都是精挑细选,有时候,款式多的时候,时间会更久,不过大多还是在20-30分钟左右的时间。
打磨镜片
这个时间相对较少,正常差不多是在20分钟左右,不过有些定制镜片的话,这种可能耗费的时间久比较多了。
Ⅱ 配眼镜大概要多少钱
配一副眼镜根据不同的镜框材质,不同的镜片材质,大众品牌价格在350元—1000元不等,如果是品牌镜框或者新型材料价格就会高出很多,价格在3000元—10000元不等。
镜框的形状、颜色、轻重、质量,镜片的薄厚、耐磨度、防辐射等保护功效都是眼镜购买者综合考虑的因素。而随着功能的增多,价格也上去了。但对大部分消费者而言,只能靠一段时间的佩戴体验来判断是否物有所值。
购买眼镜后,要向销售单位索取配制眼镜加工单、发票、售后承诺等凭证,以便将来出现问题时能够维护自己的合法权益。如发现眼镜佩戴后超过一周仍有不适反应,消费者应及时咨询眼科医生或专业人士。
(2)巴西的眼镜多少钱扩展阅读
配眼镜的注意事项
1、初次验光最好选择专业的眼科医院、视光中心等机构配镜。了解验光人员是否具有验光师资质;眼镜产品(镜片、镜架)有无合格标识;查看配镜机构的验光、配镜设备是否贴有国家强检合格标记。
2、过敏人群谨慎选择金属架。容易过敏的消费者,尽量不选择金属框(尤其是合金材质的)。
3、特殊眼病患者选择防蓝光眼镜时需注意。建议普通消费者谨慎选择防蓝光镜片;特殊眼病患者如黄斑疾患的人群,比如年龄相关性黄斑变形、黄斑裂孔、糖尿病性眼底病变患者根据眼科医生建议选择防蓝光眼镜。
4、取镜后可根据情况做个性化调整。取到配装后的眼镜应检查眼镜是否有表面瑕疵,如镜架划痕、镜片表面划伤、镜片崩边、隙缝等,戴镜后是否有严重的不舒服症状,如看地板不平或变形。
Ⅲ 天文望眼镜多少钱的可以看清8大行星
为什么说问“望远镜能看多远”是错误的? 我们的肉眼就是一台光学仪器,肉眼可以看到220万光年以外的仙女座大星云,但是看不见距离地球最近的太阳系外恒星比邻星(4.2光年)。相信大家已经体会到了吧,说一个光学仪器能看多远是没有意义的,只能说看多暗。
编辑本段折射式望远镜
伽利略式望远镜
1609年,伽利略制作了一架口径4.2厘米,长约12厘米的望远镜。他是用平凸透镜作为物镜,凹透镜作为目镜,这种光学系统称为伽利略式望远镜。伽利略用这架望远镜指向天空,得到了一系列的重要发现,天文学从此进入了望远镜时代。 世界上最大的天文望远镜
开普勒式望远镜
1611年,德国天文学家开普勒用两片双凸透镜分别作为物镜和目镜,使放大倍数有了明显的提高,以后人们将这种光学系统称为开普勒式望远镜。现在人们用的折射式望远镜还是这两种形式,天文望远镜是采用开普勒式。 需要指出的是,由于当时的望远镜采用单个透镜作为物镜,存在严重的色差,为了获得好的观测效果,需要用曲率非常小的透镜,这势必会造成镜身的加长。所以在很长的一段时间内,天文学家一直在梦想制作更长的望远镜,许多尝试均以失败告终。
折射式的发展
1757年,杜隆通过研究玻璃和水的折射和色散,建立了消色差透镜的理论基础,并用冕牌玻璃和火石玻璃制造了消色差透镜。从此,消色差折射望远镜完全取代了长镜身望远镜。但是,由于技术方面的限制,很难铸造较大的火石玻璃,在消色差望远镜的初期,最多只能磨制出10厘米的透镜。 十九世纪末,随着制造技术的提高,制造较大口径的折射望远镜成为可能,随之就出现了一个制造大口径折射望远镜的高潮。世界上现有的8架70厘米以上的折射望远镜有7架是在1885年到1897年期间建成的,其中最有代表性的是1897年建成的口径102厘米的叶凯士望远镜和1886年建成的口径91厘米的里克望远镜。 折射望远镜的优点是焦距长,底片比例尺大,对镜筒弯曲不敏感,最适合于做天体测量方面的工作。但是它总是有残余的色差,同时对紫外、红外波段的辐射吸收很厉害。而巨大的光学玻璃浇制也十分困难,到1897年叶凯士望远镜建成,折射望远镜的发展达到了顶点,此后的这一百年中再也没有更大的折射望远镜出现。这主要是因为从技术上无法铸造出大块完美无缺的玻璃做透镜,并且,由于重力使大尺寸透镜的变形会非常明显,因而丧失明锐的焦点 。 BOSMA博冠折射望远镜
编辑本段折反射式望远镜
施密特式折反射望远镜
折反射式望远镜最早出现于1814年。1931年,德国光学家施密特用一块别具一格的接近于平行板的非球面薄透镜作为改正镜,与球面反射镜配合,制成了可以消除球差和轴外象差的施密特式折反射望远镜,这种望远镜光力强、视场大、象差小,适合于拍摄大面积的天区照片,尤其是对暗弱星云的拍照效果非常突出。施密特望远镜已经成了天文观测的重要工具。
马克苏托夫式
1940年马克苏托夫用一个弯月形状透镜作为改正透镜,制造出另一种类型的折反射望远镜,它的两个表面是两个曲率不同的球面,相差不大,但曲率和厚度都很大。它的所有表面均为球面,比施密特式望远镜的改正板容易磨制,镜筒也比较短,但视场比施密特式望远镜小,对玻璃的要求也高一些。 由于折反射式望远镜能兼顾折射和反射两种望远镜的优点,非常适合业余的天文观测和天文摄影,并且得到了广大天文爱好者的喜爱 天狼天文望远镜
。
编辑本段现代大型光学望远镜
简介
望远镜的集光能力随着口径的增大而增强,望远镜的集光能力越强,就能够看到更暗更远的天体,这其实就是能够看到了更早期的宇宙。天体物理的发展需要更大口径的望远镜。 但是,随着望远镜口径的增大,一系列的技术问题接踵而来。海尔望远镜的镜头自重达14.5吨,可动部分的重量为530吨,而6米镜更是重达800吨。望远镜的自重引起的镜头变形相当可观,温度的不均匀使镜面产生畸变也影响了成象质量。从制造方面看,传统方法制造望远镜的费用几乎与口径的平方或立方成正比,所以制造更大口径的望远镜必须另辟新径。 自七十年代以来,在望远镜的制造方面发展了许多新技术,涉及光学、力学、计算机、自动控制和精密机械等领域。这些技术使望远镜的制造突破了镜面口径的局限,并且降低造价和简化望远镜结构。特别是主动光学技术的出现和应用,使望远镜的设计思想有了一个飞跃。 从八十年代开始,国际上掀起了制造新一代大型望远镜的热潮。其中,欧洲南方天文台的VLT,美、英、加合作的GEMINI,日本的SUBARU的主镜采用了薄镜面;美国的KeckI、KeckII和HET望远镜的主镜采用了拼接技术。 优秀的传统望远镜卡塞格林焦点在最好的工作状态下,可以将80%的几何光能集中在0〃.6范围内,而采用新技术制造的新一代大型望远镜可保持80%的光能集中在0〃.2~0〃.4,甚至更好。 下面对几个有代表性的大型望远镜分别作一些介绍: 金都天文望远镜
凯克望远镜(KeckI,KeckII) KeckI和KeckII分别在1991年和1996年建成,这是当前世界上已投入工作的最大口径的光学望远镜,因其经费主要由企业家凯克(KeckWM)捐赠(KeckI为9400万美元,KeckII为7460万美元)而命名。这两台完全相同的望远镜都放置在夏威夷的莫纳克亚,将它们放在一起是为了做干涉观测。 它们的口径都是10米,由36块六角镜面拼接组成,每块镜面口径均为1.8米,而厚度仅为10厘米,通过主动光学支撑系统,使镜面保持极高的精度。焦面设备有三个:近红外照相机、高分辨率CCD探测器和高色散光谱仪。 "象Keck这样的大望远镜,可以让我们沿着时间的长河,探寻宇宙的起源,Keck更是可以让我们看到宇宙最初诞生 的时刻"。
欧洲南方天文台甚大望远镜(VLT)
欧洲南方天文台自1986年开始研制由4台8米口径望远镜组成一台等效口径为16米的光学望远镜。这4台8米望远镜排列在一条直线上,它们均为RC光学系统,焦比是F/2,采用地平装置,主镜采用主动光学系统支撑,指向精度为1〃,跟踪精度为0.05〃,镜筒重量为100吨,叉臂重量不到120吨。这4台望远镜可以组成一个干涉阵,做两两干涉观测,也可以单独使用每一台望远镜。
双子望远镜(GEMINI)
双子望远镜是以美国为主的一项国际设备(其中,美国占50%,英国占25%,加拿大占15%,智利占5%,阿根廷占2.5%,巴西占2.5%),由美国大学天文联盟(AURA)负责实施。它由两个8米望远镜组成,一个放在北半球,一个放在南半球,以进行全天系统观测。其主镜采用主动光学控制,副镜作倾斜镜快速改正,还将通过自适 应光学系统使红外区接近衍射极限。 该工程于1993年9月开始启动,第一台在1998年7月在夏威夷开光,第二台于2000年9月在智利赛拉帕琼台址开光,整个系统预计在2001年验收后正式投入使用。
昴星团(日本)8米望远镜(SUBARU)
这是一台8米口径的光学/红外望远镜。它有三个特点:一是镜面薄,通过主动光学和自适应光学获得较高的成象质量;二是可实现0.1〃的高精度跟踪;三是采用圆柱形观测室,自动控制通风和空气过滤器,使热湍流的排除达到最佳条件。此望远镜采用Serrurier桁架,可使主镜框与副镜框在移动中保持平行。 大天区多目标光纤光谱望远镜LAMOST(郭守敬) 这是中国已建成的一架有效通光口径为4米、焦距为20米、视场达20平方度的中星仪式的反射施密特望远镜。它的技术特色是: 1.把主动光学技术应用在反射施密特系统,在跟踪天体运动中作实时球差改正,实现大口径和大视场兼备的功能。 2.球面主镜和反射镜均采用拼接技术。 3.多目标光纤(可达4000根,一般望远镜只有600根)的光谱技术将是一个重要突破。 LAMOST把普测的星系极限星等推到20.5m,比SDSS计划高2等左右,实现107个星系的光谱普测,把观测目标的数量提高1个量级 最大光学天文望远镜
。
编辑本段射电望远镜
1932年央斯基(Jansky.K.G)用无线电天线探测到来自银河系中心(人马座方向)的射电辐射,这标志着人类打开了在传统光学波段之外进行观测的第一个窗口。 第二次世界大战结束后,射电天文学脱颖而出,射电望远镜为射电天文学的发展起了关键的作用,比如:六十年代天文学的四大发现,类星体,脉冲星,星际分子和宇宙微波背景辐射,都是用射电望远镜观测得到的。射电望远镜的每一次长足的进步都会毫无例外地为射电天文学的发展树立一个里程碑。 英国曼彻斯特大学于1946年建造了直径为66.5米的固定式抛物面射电望远镜,1955年又建成了当时世界上最大的可转动抛物面射电望远镜;六十年代,美国在波多黎各阿雷西博镇建造了直径达305米的抛物面射电望远镜,它是顺着山坡固定在地表面上的,不能转动,这是世界上最大的单孔径射电望远镜。 1962年,Ryle发明了综合孔径射电望远镜,他也因此获得了1974年诺贝尔物理学奖。综合孔径射电望远镜实现了由多个较小天线结构获得相当于大口径单天线所能取得的效果。 1967年Broten等人第一次记录到了VLBI干涉条纹。 七十年代,联邦德国在玻恩附近建造了100米直径的全向转动抛物面射电望远镜,这是世界上最大的可转动单天线射电望远镜。 八十年代以来,欧洲的VLBI网(EVN),美国的VLBA阵,日本的空间VLBI(VSOP)相继投入使用,这是新一代射电望远镜的代表,它们在灵敏度、分辨率和观测波段上都大大超过了以往的望远镜。 中国科学院上海天文台和乌鲁木齐天文站的两架25米射电望远镜作为正式成员参加了美国的地球自转连续观测计划(CORE)和欧洲的甚长基线干涉网(EVN),这两个计划分别用于地球自转和高精度天体测量研究(CORE)和天体物理研究(EVN)。这种由各国射电望远镜联合进行长基线干涉观测的方式,起到了任何一个国家单独使用大望远镜都不能达到的效果。 另外,美国国立四大天文台(NARO)研制的100米单天线望远镜(GBT),采用无遮挡(偏馈),主动光学等设计,该天线目前正在安装中,2000年有可能投入使用。 国际上将联合发展接收面积为1平方公里的低频射电望远镜阵(SKA),该计划将使低频射电观测的灵敏度约有两个量级的提高,有关各国正在进行各种预研究。 在增加射电观测波段覆盖方面,美国史密松天体物理天文台和中国台湾天文与天体物理研究院正在夏威夷建造国际上第一个亚毫米波干涉阵(SMA),它由8个6米的天线组成,工作频率从190GHz到85z,部分设备已经安装。美国的毫米波阵(MMA)和欧洲的大南天阵(LAS)将合并成为一个新的毫米波阵计划――ALMA。这个计划将有64个12米天线组成,最长基线达到10公里以上,工作频率从70到950GHz,放在智利的Atacama附近,如果合并顺利,将在2001年开始建造,日本方面也在考虑参加该计划的可能性。 在提高射电观测的角分辨率方面,新一代的大型设备大多数考虑干涉阵的方案;为了进一步提高空间VLBI观测的角分辨率和灵敏度,第二代空间VLBI计划――ARISE(25米口径)已经提出。 相信这些设备的建成并投入使用将会使射电天文成为天文学的重要研究手段,并会为天文学发展带来难以预料的机会 最大红外天文望远镜
。
编辑本段空间望远镜
概述
我们知道,地球大气对电磁波有严重的吸收,我们在地面上只能进行射电、可见光和部分红外波段的观测。随着空间技术的发展,在大气外进行观测已成为可能,所以就有了可以在大气层外观测的空间望远镜(Spacetelescope)。空间观测设备与地面观测设备相比,有极大的优势:以光学望远镜为例,望远镜可以接收到宽得多的波段,短波甚至可以延伸到100纳米。没有大气抖动后,分辨本领可以得到很大的提高,空间没有重力,仪器就不会因自重而变形。前面介绍的紫外望远镜、X射线望远镜、γ射线望远镜以及部分红外望远镜的观测都都是在地球大气层外进行的,也属于空间望远镜。
哈勃空间望远镜(HST)
这是由美国宇航局主持建造的四座巨型空间天文台中的第一座,也是所有天文观测项目中规模最大、投资最多、最受到公众注目的一项。它筹建于1978年,设计历时7年,1989年完成,并于1990年4月25日由航天飞机运载升空,耗资30亿美元。但是由于人为原因造成的主镜光学系统的球差,不得不在1993年12月2日进行了规模浩大的修复工作。成功的修复使HST性能达到甚至超过了原先设计的目标,观测结果表明,它的分辨率比地面的大型望远镜高出几十倍。 1997年的维修中,为HST安装了第二代仪器:有空间望远镜成象光谱仪、近红外照相机和多目标摄谱仪,把HST的观测范围扩展到了近红外并提高了紫外光谱上的效率。 1999年12月的维修为HST更换了陀螺仪和新的计算机,并安装了第三代仪器――高级普查摄像仪,这将提高HST在紫外-光学-近红外的灵敏度和成图的性能。 HST对国际天文学界的发展有非常重要的影响。
二十一世纪初的空间天文望远镜
"下一代大型空间望远镜"(NGST)和"空间干涉测量飞行任务"(SIM)是NASA"起源计划"的关键项目,用于探索在宇宙最早期形成的第一批星系和星团。其中,NGST是大孔径被动制冷望远镜,口径在4~8米之间,是HST和SIRTF(红外空间望远镜)的后续项目。它强大的观测能力特别体现在光学、近红外和中红外的大视场、衍射限成图方面。将运行于近地轨道的SIM采用迈克尔干涉方案,提供毫角秒级精度的恒星的精密绝对定位测量,同时由于具有综合成图能力,能产生高分辨率的图象,所以可以用于实现搜索其它行星等科学目的。 "天体物理的全天球天体测量干涉仪"(GAIA)将会在对银河系的总体几何结构及其运动学做全面和彻底的普查,在此基础上开辟广阔的天体物理研究领域。GAIA采用Fizeau干涉方案,视场为1°。GAIA和SIM的任务在很大程度上是互补的。
月基天文台
由于无人的空间天文观测只能依靠事先设计的观测模式自动进行,非常被动,如果在月球表面上建立月基天文台,就能化被动为主动,大大提高观测精度。"阿波罗16号"登月时宇航员在月面上拍摄的大麦哲伦星云照片表明,月面是理想的天文观测场所。建立月基天文台具有以下优点: 1.月球上为高度真空状态,比空间天文观测设备所处还要低百万倍。 2.月球为天文望远镜提供了一个稳定、坚固和巨大的观测平台,在月球上观测只需极简单的跟踪系统。 3.月震活动只相当于地震活动的10-8,这一点对于在月面上建立几十至数百公里的长基线射电、光学和红外干涉系统是很有利的。 4.月球表面上的重力只有地球表面重力的1/6,这会给天文台的建造带来方便。另外,在地球上所有影响天文观测的因素,比如大气折射、散射和吸收,无线电干扰等,在月球上均不存在。 美国、欧洲和日本都计划在未来的几年内再次登月并在月球上建立永久居住区,可以预料,人类在月球上建立永久性基地后,建立月基天文台是必然的。 对于天文和天体物理的科研领域来讲,空间观测项目无论从人员规模上还是经费上都是相当可观的,如世界上最大的地面光学望远镜象Keck的建设费用(7000~9000万美元)只相当于一颗普通的空间探测卫星的研制和发射费用。并且,空间天文观测的难度高,仪器的接收面积小,运行寿命短,难于维修,所以它并不能取代地面天文观测。在二十一世纪,空间观测与地面观测将是天文观测相辅相成的两翼 凤凰天文望远镜
。
编辑本段其它波段的望远镜
概述
我们知道,在地球表面有一层浓厚的大气,由于地球大气中各种粒子与天体辐射的相互作用(主要是吸收和反射),使得大部分波段范围内的天体辐射无法到达地面。人们把能到达地面的波段形象地称为"大气窗口",这种"窗口"有三个。 天文望远镜
光学窗口:这是最重要的一个窗口,波长在300~700纳米之间,包括了可见光波段(400~700纳米),光学望远镜一直是地面天文观测的主要工具。 红外窗口:红外波段的范围在0.7~1000微米之间,由于地球大气中不同分子吸收红外线波长不一致,造成红外波段的情况比较复杂。对于天文研究常用的有七个红外窗口。 射电窗口:射电波段是指波长大于1毫米的电磁波。大气对射电波段也有少量的吸收,但在40毫米~30米的范围内大气几乎是完全透明的,我们一般把1毫米~30米的范围称为射电窗口。 大气对于其它波段,比如紫外线、X射线、γ射线等均为不透明的,在人造卫星上天后才实现这些波段的天文观测。 天文望远镜
红外望远镜
最早的红外观测可以追溯到十八世纪末。但是,由于地球大气的吸收和散射造成在地面进行的红外观测只局限于几个近红外窗口,要获得更多红外波段的信息,就必须进行空间红外观测。现代的红外天文观测兴盛于十九世纪六、七十年代,当时是采用高空气球和飞机运载的红外望远镜或探测器进行观测。 1983年1月23日由美英荷联合发射了第一颗红外天文卫星IRAS。其主体是一个口径为57厘米的望远镜,主要从事巡天工作。IRAS的成功极大地推动了红外天文在各个层次的发展。直到现在,IRAS的观测源仍然是天文学家研究的热点目标。 1995年11月17日由欧洲、美国和日本合作的红外空间天文台(ISO)发射升空并进入预定轨道。ISO的主体是一个口径为60厘米的R-C式望远镜,它的功能和性能均比IRAS有许多提高,它携带了四台观测仪器,分别实现成象、偏振、分光、光栅分光、F-P干涉分光、测光等功能。与IRAS相比,ISO从近红外到远红外,更宽的波段范围;有更高的空间分辨率;更高的灵敏度(约为IRAS的100倍);以及更多的功能。 ISO的实际工作寿命为30个月,对目标进行定点观测(IRAS的观测是巡天观测),这能有的放矢地解决天文学家提出的问题。预计在今后的几年中,以ISO数据为基础的研究将会成为天文学的热点之一。 从太阳系到宇宙大尺度红外望远镜与光学望远镜有许多相同或相似之处,因此可以对地面的光学望远镜进行一些改装,使它能同时也可从事红外观测。这样就可以用这些望远镜在月夜或白天进行红外观测,更大地发挥观测设备的效率。
紫外望远镜
紫外波段是介于X射线和可见光之间的频率范围,观测波段为3100~100埃。紫外观测要放在150公里的高度才能进行,以避开臭氧层和大气的吸收。第一次紫外观测是用气球将望远镜载上高空,以后用了火箭,航天飞机和卫星等空间技术才使紫外观测有了真正的发展。 紫外波段的观测在天体物理上有重要的意义。紫外波段是介于X射线和可见光之间的频率范围,在历史上紫外和可见光的划分界限在3900埃,当时的划分标准是肉眼能否看到。现代紫外天文学的观测波段为3100~100埃,和X射线相接,这是因为臭氧层对电磁波的吸收界限在这里。 1968年美国发射了OAO-2,之后欧洲也发射了TD-1A,它们的任务是对天空的紫外辐射作一般性的普查观测。被命名为哥白尼号的OAO-3于1972年发射升空,它携带了一架0.8米的紫外望远镜,正常运行了9年,观测了天体的950~3500埃的紫外谱。 1978年发射了国际紫外探测者(IUE),虽然其望远镜的口径比哥白尼号小,但检测灵敏度有了极大的提高。IUE的观测数据成为重要的天体物理研究资源。 1990年12月2~11日,哥伦比亚号航天飞机搭载Astro-1天文台作了空间实验室第一次紫外光谱上的天文观测;1995年3月2日开始,Astro-2天文台完成了为期16天的紫外天文观测。 1992年美国宇航局发射了一颗观测卫星――极远紫外探索卫星(EUVE),是在极远紫外波段作巡天观测。 1999年6月24日FUSE卫星发射升空,这是NASA的"起源计划"项目之一,其任务是要回答天文学有关宇宙演化的基本问题。 紫外天文学是全波段天文学的重要组成部分,自哥白尼号升空至今的30年中,已经发展了紫外波段的EUV(极端紫外)、FUV(远紫外)、UV(紫外)等多种探测卫星,覆盖了全部紫外波段。
X射线望远镜
X射线辐射的波段范围是0.01-10纳米,其中波长较短(能量较高)的称为硬X射线,波长较长的称为软X射线。天体的X射线是根本无法到达地面的,因此只有在六十年代人造地球卫星上天后,天文学家才获得了重要的观测成果,X射线天文学才发展起来。早期主要是对太阳的X射线进行观测。 1962年6月,美国麻省理工学院的研究小组第一次发现来自天蝎座方向的强大X射线源,这使非太阳X射线天文学进入了较快的发展阶段。七十年代,高能天文台1号、2号两颗卫星发射成功,首次进行了X射线波段的巡天观测,使X射线的观测研究向前迈进了一大步,形成对X射线观测的热潮。进入八十年代以来,各国相继发射卫星,对X射线波段进行研究: 1987年4月,由前苏联的火箭将德国、英国、前苏联、及荷兰等国家研制的X射线探测器送入太空; 1987年日本的X射线探测卫星GINGA发射升空; 1989年前苏联发射了一颗高能天体物理实验卫星――GRANAT,它载有前苏联、法国、保加利亚和丹麦等国研制的7台探测仪器,主要工作为成象、光谱和对爆发现象的观测与监测; 1990年6月,伦琴X射线天文卫星(简称ROSAT)进入地球轨道,为研究工作取得大批重要的观测资料,到现在它已基本完成预定的观测任务; 1990年12月"哥伦比亚"号航天飞机将美国的"宽带X射线望远镜"带入太空进行了为期9天的观测; 1993年2月,日本的"飞鸟"X射线探测卫星由火箭送入轨道; 1996年美国发射了"X射线光度探测卫星"(XTE), 1999年7月23日美国成功发射了高等X射线天体物理设备(CHANDRA)中的一颗卫星,另一颗将在2000年发射; 1999年12月13日欧洲共同体宇航局发射了一颗名为XMM的卫星。 2000年日本也将发射一颗X射线的观测设备。 以上这些项目和计划表明,未来几年将会是一个X射线观测和研究的高潮。
γ射线望远镜
γ射线比硬X射线的波长更短,能量更高,由于地球大气的吸收,γ射线天文观测只能通过高空气球和人造卫星搭载的仪器进行。 1991年,美国的康普顿(γ射线)空间天文台(ComptonGRO或CGRO)由航天飞机送入地球轨道。它的主要任务是进行γ波段的首次巡天观测,同时也对较强的宇宙γ射线源进行高灵敏度、高分辨率的成象、能谱测量和光变测量,取得了许多有重大科学价值的结果。 CGRO配备了4台仪器,它们在规模和性能上都比以往的探测设备有量级上的提高,这些设备的研制成功为高能天体物理学的研究带来了深刻的变化,也标志着γ射线天文学开始逐渐进入成熟阶段。CGRO携带的四台仪器分别是:爆发和暂时源实验(BATSE),可变向闪烁光谱仪实验(OSSE),1Mev~30Mev范围内工作的成象望远镜(COMPTEL),1Mev~30Mev范围内工作的成象望远镜(COMPTEL)。 受到康普顿空间天文台成功的鼓舞,欧洲和美国的科研机构合作制订了一个新的γ射线望远镜计划-INTEGRAL,准备在2001年送入太空,它的上天将为康普顿空间天文台之后的γ射线天文学的进一步发展奠定基础。 图注:这是位于美国亚利桑那州葛理翰山大学国际天文台天文望远镜拍到的第一张宇宙天体图片,这是一个距离地球1.02亿光年的螺旋型星系。它是目前世界上最大的双目光学天文望远镜。
Ⅳ 世界上最贵的眼镜多少钱
2011年8月,最贵的眼镜品牌LOTOS低调亮相南京金鹰新街口店,在这里,几万、十几万的价格不稀奇,上百万甚至是千万的天价眼镜都能够定制。据悉,天价眼镜在南京不乏问津者,短短一个月的时间内,售价12万的眼镜已经卖出去四副,售价近百万的眼镜也有不少人感兴趣。
在LOTOS柜台,专柜的梁经理介绍说,目前柜台展示的都是售价9万多的镜架,其他款式的都需要定制。“其实,我们的眼镜基本都需要定制,因为每个顾客的脸形、眼距等都不一样,而且每副镜架又都是手工制作的,所以,基本上每副眼镜都需要定制”。梁经理介绍,目前来咨询五六十万的眼镜的顾客也不少。
“以一副标价288万的最贵眼镜为例,顾客只能看画册预订。”梁经理说。记者看到,这副近300万的最贵眼镜镶有945颗圆形明亮切割钻石,共重8克拉。此外,柜台内还有一款售价168万的眼镜,镶嵌了84颗公主方形切割无暇顶级钻石。“我们的售价都是参考价格,具体的价格会根据顾客所实际用的材料和钻石数量有所改变。”
Ⅳ 一般的眼镜要多少钱
镜片5元到10元,特指一般的折射率,一般屈光度,没散光,超薄镜片的大约是5元到25元都可以。
镜架18元,属于中档,钛金属镜架80元一副。
按照镜架形状磨片5元到6元。
国内基本上都是这个行情。
Ⅵ 配眼镜大概多少钱
配眼镜的价格高低是由自己决定的。眼镜的价格主要与选择的镜片、框架的材质以及品牌、款式有关系。
选择不同镜片的材质、框架的样式以及选择不同的品牌,会造成眼镜的价格波动范围很大,从几百元到几千元不等。
镜片一般常用的有玻璃镜片、树脂镜片等,一般这样的一片镜片价格在一百到二百元左右,但如果选择更为昂贵的水晶镜片,价格可以达到上千元甚至是几千元不等。
镜架的价格主要与款式还有品牌有关系,如果选择较为新颖的款式,选择大的品牌,尤其是一些知名品牌,价格就会更高。所以,对于一副一千度的眼镜,价格一般在几百元到一千元左右不等,但如果选择更好的材质以及款式,价格会更高。
一般眼镜的价格与眼睛的度数关系不是很大,但较高的度数会表现在配眼镜时镜片的厚度不一样。如果度数越高,镜片会越厚,对于像一千度这种超高度近视眼在配眼镜时,往往需要对镜片进行加薄的处理,让镜片变得薄一些,这样的特殊处理可能会造成眼镜的价格略为升高。
眼镜的选择可参考以下内容:
框架眼镜是现在多数屈光不正者都很常配的,框架眼镜的价格不仅受材质的影响,而且
还有品牌、眼镜的功能等多方面的影响。一般配一副眼镜两三百的也有,七百八的也
有,上千的也有,还是看个人的实际需要和经济能力了。
一般大家配眼镜的话,会依据验光的结果来选择合适的折射率的镜片,适合个人的镜
架,通常传统的实体店的价格要贵,网上的相对要便宜点。
当然,也有实体店的眼镜的
价格比较便宜的。
隐形眼镜的佩戴也是比较受年轻人士的喜欢,不同牌子的隐形眼镜以及不同的使用周期
的隐形眼镜价格都是不同的,而且包装的隐形眼镜的片数多少的不同,价格也是不同
的。
隐形眼镜几十块钱的也有,一两百的也是有的,具体的购买还是要看个人的需要和
实际的经济水平了。
Ⅶ 一副眼镜多少钱
可以问店员的,每间眼镜店配镜都有不同的价格,要看你想怎么选来说,眼镜的价格也是度数和镜框决定的,所以拍不够钱可以选择稍微差点框。一般框,度数200-300的话不是很贵的店大概500左右吧。望采纳
Ⅷ 配一副近视眼镜大概多少钱
几百元到几千元不等。患者如果需要配戴框架眼镜,镜片的材料主要分为玻璃和树脂,而且由于患者近视度数不同,镜片的价格也是不一样的,可以从几百元到几千元不等。
近视眼镜的价格包括两部分:眼镜片和眼镜架。不同材料的价格是不同的,包括玻璃的质量,一般在几十到几百元之间。近视应该是对良好视觉效果的追求。国产眼镜比进口眼镜便宜得多。如果医院里眼镜的价格比较高,但是效果也很好。价格大约是1000元。如果眼镜店提供眼镜,普通眼镜也需要大约200-800副。建议选择价格更高、质量更好的近视眼镜。
(8)巴西的眼镜多少钱扩展阅读:
近视眼镜的镜片需要选择比较轻盈,有抗疲劳、透光性较好,有一定的抗辐射效果方面的镜片比较好。因为在得了近视之后,患者自身的眼睛是容易出现视疲劳等现象的,以及日常的各种电子产品,如手机、电脑使用时间也比较长,也存在一定的辐射情况,会对眼睛进一步加重近视的,因此需要有一定防辐射功能的。
近视眼镜的镜片选择,主要是选择的比较轻盈、有抗辐射和抗疲劳的功能,在镜片这方面不仅是需要保证能够让视力方面相对稳定和提高,也更应当防止日后在用眼的过程中,各种用眼疲劳和受到辐射方面的情况。
Ⅸ 配近视眼镜一般多少钱
配近视眼镜大概的费用会在200~2000元之间不等的价位,但是具体的价格还要根据患者选择的眼镜片,眼镜框架以及框架的材质和品牌等相关因素所决定,这些材质的质量不同,价格会有很大的差异性。如果眼睛近视要及时的到医院进行验光配镜,会对以后视力恢复造成影响。
一般眼镜价格的高低是由两部分组成的:自身因素和外在因素。
一、自身因素
近视眼镜的自身因素由镜片材质、眼镜框架和自身品牌等因素决定。其中镜片材质可以分为玻璃片,树脂片和pc镜片等;眼镜框架也可以分为板材、纯钛、TR90、合金、记忆合金和ULTEM等;而品牌也是很多人配眼镜是所追求的一个方向。
二、外在因素
目前大家主要去配眼镜的地方有专业的眼科医院、眼镜店或是专业的网上眼镜商城。因为近视眼镜还受到一些地域,门店租金和人力成本等一系列的因素影响,所以难免还是有不同的。