導航:首頁 > 德國資訊 > 德國物理學家學什麼

德國物理學家學什麼

發布時間:2022-05-23 20:19:41

1. 物理科學家初中物理裡面涉及到哪些科學家(都有什麼

焦耳-焦耳,英國傑出的物理學家。焦耳一生都在從事實驗研究工作,在電磁學、熱學、氣體分子動理論等方面均作出了卓越的貢獻赫茲-,德國物理學家,生於漢堡。赫茲對人類最偉大的貢獻是用實驗證實了電磁波的存在惠更斯-荷蘭物理學家、數學家、天文學家。伽利略-義大利著名數學家、天文學家、物理學家、哲學家,是首先在科學實驗的基礎上融合貫通了數學、天文學、物理學三門科學的科學巨人。伽利略是科學革命的先驅,畢生把哥白尼、開普勒開創的新世界觀加以證明和廣泛宣傳。法拉第-英國物理學家、化學家,也是著名的自學成才的科學家。法拉第主要從事電學、磁學、磁光學、電化學方面的研究,並在這些領域取得了一系列重大發現,是電磁場理論的奠基人愛因斯坦-德國物理學家,1921年諾貝爾物理學獎金獲得者。他的科學業績主要包括四個方面:早期對布朗運動的研究;狹義相對論的創建;推動量子力學的發展;建立了廣義相對論,開辟了宇宙學的研究途徑笛卡兒-,1596年3月13日,在法國西部的希列塔尼半島上的圖朗城.笛卡兒最早認識到慣性定律是解決力學問題的關鍵所在,最早把慣性定律作為原理加以確立。庫侖-法國工程師、物理學家。布儒斯特-蘇格蘭物理學家,主要從事光學方面的研究貝爾-電話發明家,1847年生於蘇格蘭愛丁堡市。

2. 物理學家有哪些呢

1、馬克斯·卡爾·恩斯特·路德維希·普朗克(德語:Max Karl Ernst Ludwig Planck;1858年4月23日—1947年10月4日),出生於德國荷爾施泰因,德國著名物理學家、量子力學的重要創始人之一。

以上內容參考:網路-艾薩克·牛頓

以上內容參考:網路-亨利·卡文迪許

以上內容參考:網路-邁克爾·法拉第

以上內容參考:網路-喬治·西蒙·歐姆

以上內容參考:網路-馬克斯·普朗克

3. 世界著名的物理學家有哪些

1、牛頓

艾薩克·牛頓是英格蘭物理學家、數學家、天文學家、自然哲學家。主要貢獻是他在1687年發表的論文《自然哲學的數學原理》里的萬有引力和三大運動定律。

拓展資料(物理學研究領域):

1、凝聚態物理:

研究物質宏觀性質,這些物相內包含極大數目的組元,且組員間相互作用極強。最熟悉的凝聚態相是固體和液體,它們由原子間的鍵和電磁力所形成。更多的凝聚態相包括超流和波色-愛因斯坦凝聚態(在十分低溫時,某些原子系統內發現);某些材料中導電電子呈現的超導相;原子點陣中出現的鐵磁和反鐵磁相。凝聚態物理一直是最大的的研究領域。歷史上,它由固體物理生長出來。1967年由菲立普·安德森最早提出,採用此名。

2、原子、分子和光學物理:

研究原子尺寸或幾個原子結構范圍內,物質-物質和光-物質的相互作用。這三個領域是密切相關的。因為它們使用類似的方法和有關的能量標度。它們都包括經典和量子的處理方法;從微觀的角度處理問題。原子物理處理原子的殼層,集中在原子和離子的量子控制;冷卻和誘捕;低溫碰撞動力學;准確測量基本常數;電子在結構動力學方面的集體效應。原子物理受核的影晌。但如核分裂,核合成等核內部現象則屬高能物理。 分子物理集中在多原子結構以及它們,內外部和物質及光的相互作用,這里的光學物理只研究光的基本特性及光與物質在微觀領域的相互作用。

3、高能/粒子物理:

粒子物理研究物質和能量的基本組元及它們間的相互作用;也可稱為高能物理。因為許多基本粒子在自然界不存在,只在粒子加速器中與其它粒子高能碰撞下才出現。據基本粒子的相互作用標准模型描述,有12種已知物質的基本粒子模型(誇克和輕粒子)。它們通過強,弱和電磁基本力相互作用。標准模型還預言一種希格斯-波色粒子存在。現正尋找中。

4、天體物理:

天體物理和天文學是物理的理論和方法用到研究星體的結構和演變,太陽系的起源,以及宇宙的相關問題。因為天體物理的范圍寬。它用了物理的許多原理。包括力學,電磁學,統計力學,熱力學和量子力學。1931年卡爾發現了天體發出的無線電訊號。開始了無線電天文學。天文學的前沿已被空間探索所擴展。地球大氣的干擾使觀察空間需用紅外,超紫外,伽瑪射線和x-射線。物理宇宙論研究在宇宙的大范圍內宇宙的形成和演變。愛因斯坦的相對論在現代宇宙理論中起了中心的作用。20世紀早期哈勃從圖中發現了宇宙在膨脹,促進了宇宙的穩定狀態論和大爆炸之間的討論。1964年宇宙微波背景的發現,證明了大爆炸理論可能是正確的。大爆炸模型建立在二個理論框架上:愛因斯坦的廣義相對論和宇宙論原理。宇宙論已建立了ACDM宇宙演變模型;它包括宇宙的膨脹,黑能量和黑物質。 從費米伽瑪-射線望運鏡的新數據和現有宇宙模型的改進,可期待出現許多可能性和發現。尤其是今後數年內,圍繞黑物質方面可能有許多發現。

4. 德國物理學家,量子力學創始人

Max Karl Ernst Ludwig Planck, 1858.4.23.―1947.10.3.
姓名:馬克斯·普朗克 。職務:教授 德國物理學家,量子物理學的開創者和奠基人,1918年諾貝爾物理學獎的獲得者。 普朗克的偉大成就,就是創立了量子理論,這是物理學史上的一次巨大變革。從此結束了經典物理學一統天下的局面。

5. 德國物理學家電場,磁場

麥克斯韋電磁場理論的兩個基本論點是:變化的磁場可以產生電場;變化的電場可以產生磁場,從而預言了電磁波的存在.
德國物理學家赫茲用實驗證實了電磁波的存在.
故答案為:磁場;電磁波;赫茲

6. 德國物理學家巴克哈德·海姆有什麼理論

,「超空間發動機」的理論基礎,來自上世紀50年代已故德國物理學家巴克哈德·海姆首次提出的一個頗具爭議的宇宙構造理論。該理論稱,如果能由「超空間發動機」創造一個足夠強大的磁場或重力場,那麼身處其間的物體(如太空船)就將「進入」另一個完全不同的「多維空間」。

7. 高中物理課本中所有的物理學家及其成就

希望讀你有用高中涉及到的物理學家及其發現都有哪些? 1、胡克:英國物理學家;發現了胡克定律(F彈=kx) 2、伽利略:義大利的著名物理學家;伽利略時代的儀器、設備十分簡陋,技術也比較落後,但伽利略巧妙地運用科學的推理,給出了勻變速運動的定義,導出S正比於t2 並給以實驗檢驗;推斷並檢驗得出,無論物體輕重如何,其自由下落的快慢是相同的;通過斜面實驗,推斷出物體如不受外力作用將維持勻速直線運動的結論。後由牛頓歸納成慣性定律。伽利略的科學推理方法是人類思想史上最偉大的成就之一。 3、牛頓:英國物理學家; 動力學的奠基人,他總結和發展了前人的發現,得出牛頓定律及萬有引力定律,奠定了以牛頓定律為基礎的經典力學。 4、開普勒:丹麥天文學家;發現了行星運動規律的開普勒三定律,奠定了萬有引力定律的基礎。 5、卡文迪許:英國物理學家;巧妙的利用扭秤裝置測出了萬有引力常量。 6、布朗:英國植物學家;在用顯微鏡觀察懸浮在水中的花粉時,發現了「布朗運動」。 7、焦耳:英國物理學家;測定了熱功當量J=4.2焦/卡,為能的轉化守恆定律的建立提供了堅實的基礎。研究電流通過導體時的發熱,得到了焦耳定律。 8、開爾文:英國科學家;創立了把-273℃作為零度的熱力學溫標。 9、庫侖:法國科學家;巧妙的利用「庫侖扭秤」研究電荷之間的作用,發現了「庫侖定律」。 10、密立根:美國科學家;利用帶電油滴在豎直電場中的平衡,得到了基本電荷e 。 11、歐姆:德國物理學家;在實驗研究的基礎上,歐姆把電流與水流等比較,從而引入了電流強度、電動勢、電阻等概念,並確定了它們的關系。 12、奧斯特:丹麥科學家;通過試驗發現了電流能產生磁場。 13、安培:法國科學家;提出了著名的分子電流假說。 14、湯姆生:英國科學家;研究陰極射線,發現電子,測得了電子的比荷e/m;湯姆生還提出了「棗糕模型」,在當時能解釋一些實驗現象。 15、勞倫斯:美國科學家;發明了「迴旋加速器」,使人類在獲得高能粒子方面邁進了一步。 16、法拉第:英國科學家;發現了電磁感應,親手製成了世界上第一台發電機,提出了電磁場及磁感線、電場線的概念。 17、楞次:德國科學家;概括試驗結果,發表了確定感應電流方向的楞次定律。 18、麥克斯韋:英國科學家;總結前人研究電磁感應現象的基礎上,建立了完整的電磁場理論。 19、赫茲:德國科學家;在麥克斯韋預言電磁波存在後二十多年,第一次用實驗證實了電磁波的存在,測得電磁波傳播速度等於光速,證實了光是一種電磁波。 20、惠更斯:荷蘭科學家;在對光的研究中,提出了光的波動說。發明了擺鍾。 21、托馬斯·楊:英國物理學家;首先巧妙而簡單的解決了相干光源問題,成功地觀察到光的干涉現象。(雙孔或雙縫干涉) 22、倫琴:德國物理學家;繼英國物理學家赫謝耳發現紅外線,德國物理學家裡特發現紫外線後,發現了當高速電子打在管壁上,管壁能發射出X射線—倫琴射線。 23、普朗克:德國物理學家;提出量子概念—電磁輻射(含光輻射)的能量是不連續的,E與頻率υ成正比。其在熱力學方面也有巨大貢獻。 24、愛因斯坦:德籍猶太人,後加入美國籍,20世紀最偉大的科學家,他提出了「光子」理論及光電效應方程,建立了狹義相對論及廣義相對論。提出了「質能方程」。 25、德布羅意:法國物理學家;提出一切微觀粒子都有波粒二象性;提出物質波概念,任何一種運動的物體都有一種波與之對應。 26、盧瑟福:英國物理學家;通過α粒子的散射現象,提出原子的核式結構;首先實現了人工核反應,發現了質子。 27、玻爾:丹麥物理學家;把普朗克的量子理論應用到原子系統上,提出原子的玻爾理論。 28、查德威克:英國物理學家;從原子核的人工轉變實驗研究中,發現了中子。 29、威爾遜:英國物理學家;發明了威爾遜雲室以觀察α、β、γ射線的徑跡。 30、貝克勒爾:法國物理學家;首次發現了鈾的天然放射現象,開始認識原子核結構是復雜的。 31、瑪麗·居里夫婦:法國(波蘭)物理學家,是原子物理的先驅者,「鐳」的發現者。 32、約里奧·居里夫婦:法國物理學家;老居里夫婦的女兒女婿;首先發現了用人工核轉變的方法獲得放射性同位素。 量子力學的發展簡史 量子力學是在舊量子論的基礎上發展起來的。舊量子論包括普朗克的量子假說、愛因斯坦的光量子理論和玻爾的原子理論。 1900年,普朗克提出輻射量子假說,假定電磁場和物質交換能量是以間斷的形式(能量子)實現的,能量子的大小同輻射頻率成正比,比例常數稱為普朗克常數,從而得出黑體輻射能量分布公式,成功地解釋了黑體輻射現象。 1905年,愛因斯坦引進光量子(光子)的概念,並給出了光子的能量、動量與輻射的頻率和波長的關系,成功地解釋了光電效應。其後,他又提出固體的振動能量也是量子化的,從而解釋了低溫下固體比熱問題。 1913年,玻爾在盧瑟福有核原子模型的基礎上建立起原子的量子理論。按照這個理論,原子中的電子只能在分立的軌道上運動,原子具有確定的能量,它所處的這種狀態叫「定態」,而且原子只有從一個定態到另一個定態,才能吸收或輻射能量。這個理論雖然有許多成功之處,但對於進一步解釋實驗現象還有許多困難。 在人們認識到光具有波動和微粒的二象性之後,為了解釋一些經典理論無法解釋的現象,法國物理學家德布羅意於1923年提出微觀粒子具有波粒二象性的假說。德布羅意認為:正如光具有波粒二象性一樣,實體的微粒(如電子、原子等)也具有這種性質,即既具有粒子性也具有波動性。這一假說不久就為實驗所證實。 由於微觀粒子具有波粒二象性,微觀粒子所遵循的運動規律就不同於宏觀物體的運動規律,描述微觀粒子運動規律的量子力學也就不同於描述宏觀物體運動規律的經典力學。當粒子的大小由微觀過渡到宏觀時,它所遵循的規律也由量子力學過渡到經典力學。 量子力學與經典力學的差別首先表現在對粒子的狀態和力學量的描述及其變化規律上。在量子力學中,粒子的狀態用波函數描述,它是坐標和時間的復函數。為了描寫微觀粒子狀態隨時間變化的規律,就需要找出波函數所滿足的運動方程。這個方程是薛定諤在1926年首先找到的,被稱為薛定諤方程。 當微觀粒子處於某一狀態時,它的力學量(如坐標、動量、角動量、能量等)一般不具有確定的數值,而具有一系列可能值,每個可能值以一定的幾率出現。當粒子所處的狀態確定時,力學量具有某一可能值的幾率也就完全確定。這就是1927年,海森伯得出的測不準關系,同時玻爾提出了並協原理,對量子力學給出了進一步的闡釋。 量子力學和狹義相對論的結合產生了相對論量子力學。經狄拉克、海森伯和泡利等人的工作發展了量子電動力學。20世紀30年代以後形成了描述各種粒子場的量子化理論——量子場論,它構成了描述基本粒子現象的理論基礎。 量子力學是在舊量子論建立之後發展建立起來的。舊量子論對經典物理理論加以某種人為的修正或附加條件以便解釋微觀領域中的一些現象。由於舊量子論不能令人滿意,人們在尋找微觀領域的規律時,從兩條不同的道路建立了量子力學。 1925年,海森堡基於物理理論只處理可觀察量的認識,拋棄了不可觀察的軌道概念,並從可觀察的輻射頻率及其強度出發,和玻恩、約爾丹一起建立起矩陣力學;1926年,薛定諤基於量子性是微觀體系波動性的反映這一認識,找到了微觀體系的運動方程,從而建立起波動力學,其後不久還證明了波動力學和矩陣力學的數學等價性;狄拉克和約爾丹各自獨立地發展了一種普遍的變換理論,給出量子力學簡潔、完善的數學表達形式。

8. 物理學家Drude的簡介

保羅·卡爾·路德維希·德魯德(德語:Paul Karl Ludwig Drude,1863年7月12日-1906年7月5日),德國物理學家,專攻光學。他寫了光學與麥克斯韋的電磁理論基本教材。

9. 一位物理學家的科學探究過程,包括人物介紹,主要發現和發現過程

編輯詞條 歐姆 【簡介】
喬治·西蒙·歐姆(Georg Simon Ohm,1787~1854年)是德國物理學家。生於巴伐利亞埃爾蘭根城。歐姆的父親是一個技術熟練的鎖匠,對哲學和數學都十分愛好。歐姆從小就在父親的教育下學習數學並受到有關機械技能的訓練,這對他後來進行研究工作特別是自製儀器有很大的幫助。歐姆的研究,主要是在1817~1827年擔任中學物理教師期間進行的!
1800年在中學接受過古典式教育。1803年考入埃爾蘭根大學,未畢業就在一所中學教書。1811年歐姆又回到埃爾蘭根完成了大學學業,並通過考試於1813年獲得哲學博士學位。1817年,他的《幾何學教科書》一書出版。同年應聘在科隆大學預科教授物理學和數學。在該校設備良好的實驗室里,作了大量實驗研究,完成了一系列重要發明。他最主要的貢獻是通過實驗發現了電流公式,後來被稱為歐姆定律。1826年,他把這些研究成果寫成題目為《金屬導電定律的測定》的論文,發表在德國《化學和物理學雜志》上。歐姆在1827年出版的《動力電路的數學研究》一書中,從理論上推導了歐姆定律,此外他對聲學也有貢獻。1833年,他前往紐倫堡理工學院任物理學教授。1841年,歐姆獲英國倫敦皇家學會的柯希利獎章,第二年當選為該學會的國外會員。1852年,他被任命為慕尼黑大學教授。為了紀念他,人們把電阻的單位命名為歐姆。其定義是:在電路中兩點間,當通過1安培穩恆電流時,如果這兩點間的電壓為1伏特,那麼這兩點間導體的電阻便定義為1歐姆。
1805年,歐姆進入愛爾蘭大學學習,後來由於家庭經濟困難,於1806年被迫退學。通過自學,他於1811年又重新回到愛爾蘭大學,順利地取得了博士學位。大學畢業後,歐姆靠教書維持生活。從1820年起,他開始研究電磁學。
歐姆的研究工作是在十分困難的條件下進行的。他不僅要忙於教學工作,而且圖書資料和儀器都很缺乏,他只能利用業余時間,自己動手設計和製造儀器來進行有關的實驗。1826年,歐姆發現了電學上的一個重要定律——歐姆定律,這是他最大的貢獻。這個定律在我們今天看來很簡單,然而它的發現過程卻並非如一般人想像的那麼簡單。歐姆為此付出了十分艱巨的勞動。在那個年代,人們對電流強度、電壓、電阻等概念都還不大清楚,特別是電阻的概念還沒有,當然也就根本談不上對它們進行精確測量了;況且歐姆本人在他的研究過程中,也幾乎沒有機會跟他那個時代的物理學家進行接觸,他的這一發現是獨立進行的。
歐姆最初進行的試驗主要是研究各種不同金屬絲導電性的強弱,用各種不同的導體來觀察磁針的偏轉角度。後來在試驗改變電路上的電動勢中,他發現了電動勢與電阻之間的依存關系,這就是歐姆定律。這一定律可以表示為兩種形式:一是部分電路的歐姆定律,通過部分電路的電流,等於該部分電路兩端的電壓,除以該部分電路的電阻;二是全電路的歐姆定律,即通過閉合電路的電流,等於電路中電源的電動勢,除以電路中的總電阻。
歐姆的研究成果最初公布時,沒有引起科學界的重視,並受到一些人的攻擊,直到1841年,英國皇家學會授予歐姆科普勒獎章,歐姆的工作才得到了普遍的承認。科普勒獎是當時科學界的最高榮譽。1854年7月,歐姆在德國曼納希逝世。
【英文簡述】
Georg Simon Ohm was born in Erlangen, Bavaria (a region of Germany), on March 16, 1787. Ohm's experimentation with voltage and direct current led him to the fundamental relationship that they are exactly proportional in a perfect conctor. Ohm's Law (U=IR) is as basic to the study of electronics, as Newton's Law (F=mA) is to classical physics. Ohm's Law applies at DC, where he measured it, and just as well at microwave frequencies. Semiconctors have been known to bend Ohm's law, but it took more than a century for this to happen. Ohm's idiot colleages apparently dismissed his work, causing him both poverty and humiliation. He died in 1854, but his name is still used approximately one billion times each day!
【逆境中的歐姆】
歐姆愛好物理和數學,歐姆自幼受到父親的教導,在科學和技術方面得到了不少的啟迪。在大學期間,因生活困難,不得不退學去做家庭教師。但他仍然堅持學習,終於完成了學業,獲得了博士學位。他曾在幾處中學任教,並在繁重的工作之餘,堅持進行科學研究。
歐姆正處在電學飛速發展的時期,新的電學成果不斷地涌現,其他科學家的發現激勵著他去進一步探索一個重要的問題:使用伏打電池的電路中,電流強度可能隨電池數目的增多而增大,但是,這中間到底存在什麼規律呢?他決心通過實驗尋找答案。
當時還沒有測量電流強弱的儀器,歐姆曾設想用電流的熱效應去測量電流的強弱,但沒有成功。
1821年施魏格爾和波根多夫發明了一種原始的電流計,這個儀器的發明使歐姆受到鼓舞。他利用業余時間,向工人學習多種加工技能,決心製作必要的電學儀器與設備。為了准確地量度電流,他巧妙地利用電流的磁效應設計了一個電流扭秤。用一根扭絲掛一個磁針,讓通電的導線與這個磁針平行放置,當導線中有電流通過時,磁針就偏轉一定的角度,由此可以判斷導線中電流的強弱了。他把自己製作的電流計連在電路中,並創造性地在放磁針的度盤上劃上刻度,以便記錄實驗的數據。這樣,1825年從根據實驗結果得出了一個公式,可惜是錯的,用這個公式計算的結果與歐姆本人後來的實驗也不一致。歐姆很後悔,意識到問題的嚴重性,打算收回已發出的論文,可是已經晚了,論文已發散出去了。急於求成的輕率做法,使他吃了苦頭,科學家對他也表示反感,認為他是假充內行。
歐姆決心要挽回影響和損失,更重要的是還要繼續通過實驗找規律。這時歐姆多麼需要人們的理解和支持啊!當時有位科學家叫波根多夫,從歐姆這位中學教師身上看到了追求真理勇於創新的才華,寫信鼓勵歐姆繼續幹下去。並建議他在實驗中,使用更加穩定的塞貝克溫差電池。這種電池是1821年由塞貝克發明的,它的原理是:用鋼、鉍兩種不同的導線連接而組成的電路中,兩個接頭的溫度不同時可以產生電流,溫差越大,電流越強。歐姆鼓起勇氣,用了溫差電池重新認真地做實現,他把一個接頭浸入沸水中,溫度保持100℃,另一接頭埋入冰塊,溫度保持0℃,從而保證一個能供應穩定電壓的電源。多次實驗之後,終於在1827年提出了一個關系式:X=a/(b+x)式中X表示電流強度,a表示電動勢(高中物理中學到),b+x表示電阻,b是電源內部的電阻,x為外部電路的電阻。這就是歐姆定律,這在電學史上是具有里程碑意義的貢獻。
但是,科學界仍不承認歐姆的科學發現,許多人對他還抱有成見,甚至認為定律太簡單,不足為信。這一切使歐姆也感到萬分痛苦和失望。
但是,真理之光終究會放射出來的。說來也湊巧,1831年有位叫波利特的科學家發表了一篇論文,得到的是與歐姆同樣的結果。這才引起科學界對歐姆的重新注意。
1841年,英國皇家學會授予他科普利金質獎章,並且宣稱歐姆定律是「在精密實驗領域中最突出的發現」。他得到了應有的榮譽。
1854年歐姆與世長辭。十年之後英國科學促進會為了紀念他,決定用歐姆的名字作為電阻單位的名稱。使人們每當使用這個術語時,總會想起這位勤奮頑強、卓有才能的中學教師。
【科研】
從1820年起,他開始研究電磁學。歐姆的研究工作是在十分困難的條件下進行的。
他不僅要忙於教學工作,而且圖書資料和儀器都很缺乏,他只能利用業余時間,自己動手設計和製造儀器來進行有關的實驗。1826年,歐姆發現了電學上的一個重要定律——歐姆定律,這是他最大的貢獻。這個定律在我們今天看來很簡單,然而它的發現過程卻並非如一般人想像的那麼簡單。歐姆為此付出了十分艱巨的勞動。在那個年代,人們對電流強度、電壓、電阻等概念都還不大清楚,特別是電阻的概念還沒有,當然也就根本談不上對它們進行精確測量了;況且歐姆本人在他的研究過程中,也幾乎沒有機會跟他那個時代的物理學家進行接觸,他的這一發現是獨立進行的。歐姆獨創地運用庫侖的方法製造了電流扭力秤,用來測量電流強度,引入和定義了電動勢、電流強度和電阻的精確概念。
歐姆對導線中的電流進行了研究。他從傅立葉發現的熱傳導規律受到啟發,導熱桿中兩點間的熱流正比於這兩點間的溫度差。因而歐姆認為,電流現象與此相似,猜想導線中兩點之間的電流也許正比於它們之間的某種驅動力,即現在所稱的電動勢。
歐姆花了很大的精力在這方面進行研究。開始他用伏打電堆作電源,但是因為電流不穩定,效果不好。後來他接受別人的建議改用溫差電池作電源,從而保證了電流的穩定性。但是如何測量電流的大小,這在當時還是一個沒有解決的難題。開始,歐姆利用電流的熱效應,用熱脹冷縮的方法來測量電流,但這種方法難以得到精確的結果。後來他把奧斯特關於電流磁效應的發現和庫侖扭秤結合起來,巧妙地設計了一個電流扭秤,用一根扭絲懸掛一磁針,讓通電導線和磁針都沿子午線方向平行放置;再用鉍和銅溫差電池,一端浸在沸水中,另一端浸在碎冰中,並用兩個水銀槽作電極,與銅線相連。當導線中通過電流時,磁針的偏轉角與導線中的電流成正比。他將實驗結果於1826年發表。1827年歐姆又在《電路的數學研究》一書中,把他的實驗規律總結成如下公式:S=γE。式中S表示電流;E表示電動力,即導線兩端的電勢差,γ為導線對電流的傳導率,其倒數即為電阻。
歐姆在自己的許多著作里還證明了:電阻與導體的長度成正比,與導體的橫截面積和傳導性成反比;在穩定電流的情況下,電荷不僅在導體的表面上,而且在導體的整個截面上運動。
歐姆定律及其公式的發現,給電學的計算,帶來了很大的方便。人們為紀念他,將電阻的單位定為歐姆,簡稱「歐」,符號為Ω。
【趣聞軼事】
1、靈巧的手藝是從事科學實驗之本
歐姆的家境十分困難,但從小受到良好的重陶,父親是個技術熟練的鎖匠,還愛好數學和哲學。父親對他的技術啟蒙,使歐姆養成了動手的好習慣,他心靈手巧,做什麼都像樣。物理是一門實驗學科,如果只會動腦不會動手,那麼就好像是用一條腿走路,走不快也走不遠。歐姆要不是有這一手好手藝,木工、車工、鉗工樣樣都能來一手,那麼他是不可能獲得如此成就的。
在進行了電流隨電壓變化的實驗中,正是歐姆巧妙地利用電流的磁效應,自己動手製成了電流扭秤,用它來測量電流強度,才取得了較精確的結果。
2、烏雲和塵埃遮不住科學真理之光
1827年,歐姆發表《伽伐尼電路的數學論述》,從理論上論證了歐姆定律,歐姆滿以為研究成果一定會受到學術界的承認也會請他去教課。可是他想錯了。書的出版招來不少諷刺和詆毀,大學教授們看不起他這個中學教師。德國人鮑爾攻擊他說:「以虔誠的眼光看待世界的人不要去讀這本書,因為它純然是不可置信的欺騙,它的唯一目的是要褻瀆自然的尊嚴。」這一切使歐姆十分傷心,他在給朋友的信中寫道:「伽伐尼電路的誕生已經給我帶來了巨大的痛苦,我真抱怨它生不逢時,因為深居朝廷的人學識淺薄,他們不能理解它的母親的真實感情。」
當然也有不少人為歐姆抱不平,發表歐姆論文的《化學和物理雜志》主編施韋格(即電流計發明者)寫信給歐姆說:「請您相信,在烏雲和塵埃後面的真理之光最終會透射出來,並含笑驅散它們。」歐姆辭去了在科隆的職務,又去當了幾年私人教師,直到七、八年之後,隨著研究電路工作的進展,人們逐漸認識到歐姆定律的重要性,歐姆本人的聲譽也大大提高。1841年英國皇家學會授予他科普利獎章,1842年被聘為國外會員,1845年被接納為巴伐利亞科學院院士。為紀念他,電阻的單位「歐姆」,以他的姓氏命名。
【電阻單位】
簡稱「歐」,符號為Ω
Ωμέγα(大寫Ω,小寫ω),又稱為大O,是第二十四個希臘字母,亦是最後一個希臘字母。
歐姆——以國際歐姆作為電阻單位,它以等於109CGSM電阻的歐姆作為基礎,用恆定電流在融冰溫度時通過質量為14.4521克、長度為106.3厘米、橫截面恆定的水銀柱受到的電阻。
歐姆的定義是一段電路的兩端電壓為1V,通過的電流為1A時,這段電路的電阻為1Ω
【歐姆定律】
Ohm』s law
電學的基本實驗定律。1826年,德國物理學家G.S.歐姆由實驗發現,通過一段導體的電流強度I與導體兩端的電壓U成正比,即I∝U,由此,將電壓與電流之比定義為該導體的電阻R,得出
U=IR這就是歐姆定律的積分形式。
電荷的流動是由電場推動的,把上述歐姆定律用於導體某處微小的電流管,得出
j=σΕ式中j和E分別是該處的電流密度和電場強度;σ是導體的電導率。這是歐姆定律的微分形式,它以點點對應的關系更為細致地描述導體的導電規律。
歐姆定律的積分形式只適用於線性電阻,如金屬、電解液(酸、鹼、鹽的水溶液)。非線性電阻的電壓、電流關系不是直線 , 歐姆定律不適用 ,但通常仍定義其電阻為 R =U/I,而認為R是個變數。上述歐姆定律的微分形式也只適用於線性導體(見電阻)。當導體為各向同性媒質時,j與E方向相同,σ為標量;當導體為各向異性媒質時,j 與E方向不同,σ為張量。歐姆定律的積分形式適用於穩恆情形,也適用於變化不太快的非穩恆情形。微分形式則適用於一般的非穩恆情形。
根據大量的實驗數據,他總結出了下面的公式:
X=a/(b+x)
式中的X代表電流磁效應的強度,相當於電流;x代表導線的長度,相當於外電路的電阻;a代表電源的「激活力」,也就是電動勢;b相當於內阻。上式實際上就是我們現在講的閉合電路的歐姆定律(I=E/(R+r))。
【歐姆接觸】
歐姆接觸是指金屬與半導體的接觸,而其接觸面的電阻值遠小於半導體本身的電阻,使得組件操作時,大部分的電壓降在於活動區(Active region)而不在接觸面。
欲形成好的歐姆接觸,有二個先決條件:
(1)金屬與半導體間有低的界面能障(Barrier Height)
(2)半導體有高濃度的雜質摻入(N ≥10EXP12 cm-3)
前者可使界面電流中熱激發部分(Thermionic Emission)增加;後者則使界面空乏區變窄,電子有更多的機會直接穿透(Tunneling),而同使Rc阻值降低。
若半導體不是硅晶,而是其它能量間隙(Energy Cap)較大的半導體(如GaAs),則較難形成歐姆接觸 (無適當的金屬可用),必須於半導體表面摻雜高濃度雜質,形成Metal-n+-n or Metal-p+-p等結構。
【歐姆殺菌】
歐姆殺菌是藉助通入電流使食品內部產生熱量達到殺菌目的的一種殺菌方法。
原理:所用電流為50-60Hz的低頻交流電。根據Joule定律,在被加熱食品內部的任一點,通入電流所產生的熱量為Q=K(gradV.*gradVo)=K(ΔV)exp2
Q——某點處的單位加熱功率,(W/m2 )
K——某點處的電導率(S/m)。
S——電導單位西門子,它等於電阻歐姆的倒數
gradV——為任一點處的電位梯度,V/m
影響歐姆殺菌的因素
(一)電導率與溫度
(二)電場強度E、頻率f
(三)流體在加熱器中所處的位置與受熱程度的關系
(四)操作因子與歐姆加熱速率的關系
歐姆殺菌工藝操作(無菌工藝)
1.裝置的預殺菌
用電導率與待殺菌物料相接近的一定濃度的硫酸鈉溶液的循環來實現。通過電流加熱使之達到一定溫度,通過壓力調節閥控制殺菌壓力,對歐姆加熱組件、保溫管和冷卻管進行殺菌。其它設備用傳統的蒸汽殺菌法。用電導率與產品相近的硫酸鈉的作為預殺菌溶液的目的是避免設備從預殺菌到產品殺菌期間電能的大幅度調整,以保持平穩而有效地過度,且溫度波動小。
2.預殺菌液冷卻後排出,引入待殺菌物料。通過反壓閥利用無菌空氣和氣氮氣調節壓力。
3.物料加熱殺菌,再依次進入保溫管、冷卻管和貯罐,供無菌充填。
4.生產結束後,切斷電源,先用清水清洗,再用80℃的2%的氫氧化溶液循環清洗30min。
【歐姆表】
歐姆表是測量電阻的儀表,G是內阻為Rg,滿刻度電流為Ig的電流表,R是可變電阻,也叫調零電阻;電池為一節干電池,電動勢為E,內阻是r,紅表筆(插入「+」插孔)與電池負極相連;黑表筆(插入「-」插孔)與電池正極相連。當被測電阻Rx 。
【年表】
1806年歐姆曾在埃爾蘭根大學求學,由於經濟困難,中途輟學,去外地當家庭教師。
1811年他重新回到埃爾蘭根取得博士學位。在埃爾蘭根教了三個學期的數學,因收入菲薄,不得不去班堡中等學校教書。
1817年出版了歐姆的第一著作(幾何教科書),他被聘為科隆的耶穌會學院的數學、物理教師,那裡實驗室設備良好,為歐姆研究電學提供了條件。
1825年歐姆發表了有關伽伐尼電路的論文,但其中的公式是錯誤的。第二年他改正了這個錯誤,得出有名的歐姆定律。
1826年在德國《化學和物理學雜志》上發表論文《金屬導電定律的測定》。
1827年出版著作《伽伐尼電路的數學論述》。
1833年他被聘為紐倫堡工藝學校物理教授。
1841年倫敦皇家學會授予他勛章。
1849年他當上了慕尼黑大學物理教授。他在晚年還寫了光學方面的教科書。
1854年7月6日,歐姆在德國曼納希逝世。
1888年2月12日,歐姆被評為世界十大奇跡

10. 世界著名的物理學家有哪些主要貢獻是什麼

麥克斯韋:他最傑出的貢獻是在經典電磁理論方面。麥克斯韋方程。
牛頓:偉大的物理學家、天文學家和數學家,經典力學體系的奠基人。牛頓三大運動定律。
泡利:瑞士籍奧地利理論物理學家。最重要的貢獻是泡利不相容原理。
普朗克:德國理論物理學家。量子論的奠基人之一。普朗克早年的科學研究領域主要是熱力學。
楞次:俄國物理學家。發現了確定感生電流方向的定律——楞次定律。
庫侖:法國物理學、軍事工程師。他在1785年根據實驗得出了電學中的基本定律——庫侖定律。
卡諾:法國物理學家、軍事工程師。提出了作為熱力學重要理論基礎的卡諾循環和卡諾定理,從理論上解決了提高熱機效率的根本途徑。
克勞修斯:德國物理學家,是氣體動理論和熱力學的主要奠基人之一。
卡文迪許:扭稱,測出萬有引力常量。
胡克:胡克定律F=kx 。
哥白尼:日心說。
開普勒:三定律。揭示天體運動規律。
麥克思韋:電磁理論。
法拉第:場概念的提出。
居里夫婦:發現物質的放射性,發現新元素。
惠更斯:單擺的周期公式。

閱讀全文

與德國物理學家學什麼相關的資料

熱點內容
金華義烏國際商貿城雨傘在哪個區 瀏覽:574
俄羅斯如何打通飛地立陶宛 瀏覽:905
韓國如何應對流感 瀏覽:735
在德國愛他美白金版賣多少錢 瀏覽:763
澳大利亞養羊業為什麼發達 瀏覽:1148
如何進入法國高等學府 瀏覽:1253
巴西龜喂火腿吃什麼 瀏覽:1185
巴西土地面積多少萬平方千米 瀏覽:1037
巴西龜中耳炎初期要用什麼葯 瀏覽:1009
國際為什麼鋅片如此短缺 瀏覽:1440
巴西是用什麼規格的電源 瀏覽:1233
在中國賣的法國名牌有什麼 瀏覽:1156
在菲律賓投資可用什麼樣的居留條件 瀏覽:1048
德國被分裂為哪些國家 瀏覽:661
澳大利亞跟團簽證要什麼材料 瀏覽:980
德國大鵝節多少錢 瀏覽:684
去菲律賓過關時會盤問什麼 瀏覽:1001
澳大利亞女王為什麼是元首 瀏覽:807
有什麼免費的韓國小說軟體 瀏覽:563
申請德國學校如何找中介 瀏覽:460